Abstract
Experiments on and calculation methods for flow in straight non-circular ducts involving turbulence-driven secondary motion are reviewed. The origin of the secondary motion and the shortcomings of existing calculation methods are discussed. A more refined model is introduced, in which algebraic expressions are derived for the Reynolds stresses in the momentum equations for the secondary motion by simplifying the modelled Reynolds-stress equations of Launder, Reece & Rodi (1975), while a simple eddy-viscosity model is used for the shear stresses in the axial momentum equation. The kinetic energy k and the dissipation rate ε of the turbulent motion which appear in the algebraic and the eddy-viscosity expressions are determined from transport equations. The resulting set of equations is solved with a forward-marching numerical procedure for three-dimensional shear layers. The model, as well as a version proposed by Naot & Rodi (1982), is tested by application to developing flow in a square duct and to developed flow in a partially roughened rectangular duct investigated experimentally by Hinze (1973). In both cases, the main features of the mean-flow and the turbulence quantities are simulated realistically by both models, but the present model underpredicts the secondary velocity while the Naot-Rodi model tends to overpredict it.