Abstract
The relationship between the routability of a field-programmable gate array (FPGA) and the flexibility of its interconnection structures is examined. The flexibility of an FPGA is determined by the number and distribution of switches used in the interconnection. While good routability can be obtained with a high flexibility, a large number of switches will result in poor performance and logical density because each switch has significant delay and area. The minimum number of switches required to achieve good routability is determined by implementing several industrial circuits in a variety of interconnection architectures. These experiments indicate that high flexibility is essential for the connection block that joins the logic blocks to the routing channel, but a relative low flexibility is sufficient for switch blocks at the junction of horizontal and vertical channels. Furthermore, it is necessary to use only a few more routing tracks than the absolute minimum possible with structures of surprisingly low flexibility.<>

This publication has 13 references indexed in Scilit: