Insulin-Like Growth Factor (IGF) Binding Protein Complementary Deoxyribonucleic Acid from Human HEP G2 Hepatoma Cells: Predicted Protein Sequence Suggests an IGF Binding Domain Different from Those of the IGF-I and IGF-II Receptors

Abstract
The primary structure of an insulin-like growth factor (IGF) binding protein produced by human HEP G2 hepatoma cells has been deduced from the cDNA sequence. The 234 amino acid protein has a predicted molecular mass of 25,274 and contains a single, distinctive cysteine-rich region. The N-terminal sequence of this protein is quite similar to the limited sequence data available for a rat IGF binding protein produced by BRL-3A cells and suggests a common ancestral origin. In contrast, the HEP G2 IGF binding protein sequence bears no similarity to the N-terminal 15 amino acids of a 53 kilodalton binding protein purified from human plasma. Comparison of full-length protein sequences for the IGF-I and IGF-II receptors with that of the HEP G2 IGF binding protein also fails to demonstrate any significant similarities among these three proteins, and suggests that each contains a unique binding domain for the IGF peptides.