Abstract
The correlations between interannual variations of tropical mean water vapor and temperature in the simulations by a low resolution (R15) GCM are stronger than those in the rawinsonde observations. The rate of fractional increase of tropical mean water vapor with temperature in the model simulations is also larger than that from the observations. The largest discrepancies are found in the region immediately above the tropical convective boundary layer (850–600 mb). The rate of fractional increase of tropical mean water vapor with temperature in the model simulations is close to that for a constant relative humidity. The correlations between variations of water vapor in the upper troposphere and those in the lower troposphere are also stronger in the model simulations than in the observations. In the horizontal, the characteristic spatial patterns of the normalized water vapor variations in the model simulations and observations are similar. The water vapor–temperature relationship in simulations ... Abstract The correlations between interannual variations of tropical mean water vapor and temperature in the simulations by a low resolution (R15) GCM are stronger than those in the rawinsonde observations. The rate of fractional increase of tropical mean water vapor with temperature in the model simulations is also larger than that from the observations. The largest discrepancies are found in the region immediately above the tropical convective boundary layer (850–600 mb). The rate of fractional increase of tropical mean water vapor with temperature in the model simulations is close to that for a constant relative humidity. The correlations between variations of water vapor in the upper troposphere and those in the lower troposphere are also stronger in the model simulations than in the observations. In the horizontal, the characteristic spatial patterns of the normalized water vapor variations in the model simulations and observations are similar. The water vapor–temperature relationship in simulations ...