Ubc9 Regulates Mitosis and Cell Survival during Zebrafish Development
- 1 December 2006
- journal article
- Published by American Society for Cell Biology (ASCB) in Molecular Biology of the Cell
- Vol. 17 (12), 5324-5336
- https://doi.org/10.1091/mbc.e06-05-0413
Abstract
Many proteins are modified by conjugation with Sumo, a gene-encoded, ubiquitin-related peptide, which is transferred to its target proteins via an enzymatic cascade. A central component of this cascade is the E2-conjugating enzyme Ubc9, which is highly conserved across species. Loss-of-function studies in yeast, nematode, fruit fly, and mouse blastocystes point to multiple roles of Ubc9 during cell cycle regulation, maintenance of nuclear architecture, chromosome segregation, and viability. Here we show that in zebrafish embryos, reduction of Ubc9 activity by expression of a dominant negative version causes widespread apoptosis, similar to the effect described in Ubc9-deficient mice. However, antisense-based knock down of zygotic ubc9 leads to much more specific defects in late proliferating tissues, such as cranial cartilage and eyes. Affected cartilaginous elements are of relatively normal size and shape, but consist of fewer and larger cells. Stainings with mitotic markers and 5-Bromo-2′-deoxyuridine incorporation studies indicate that fewer chondrocyte precursors are in mitosis, whereas the proportion of cells in S-phase is unaltered. Consistently, FACS analyses reveal an increase in the number of cells with a DNA content of 4n or even 8n. Our data indicate an in vivo requirement of Ubc9 for G2/M transition and/or progression through mitosis during vertebrate organogenesis. Failed mitosis in the absence of Ubc9 is not necessarily coupled with cell death. Rather, cells can continue to replicate their DNA, grow to a larger size, and finish their normal developmental program.Keywords
This publication has 68 references indexed in Scilit:
- Mouse Ubc9 Knockout: Many Path(way)s to RuinDevelopmental Cell, 2005
- Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skullDevelopment, 2005
- p53 deficiency rescues apoptosis and differentiation of multiple cell types in zebrafish flathead mutants deficient for zygotic DNA polymerase δ1Cell Death & Differentiation, 2005
- An artificial promoter construct for heat-inducible misexpression during fish embryogenesisDevelopmental Biology, 2004
- The Polycomb Protein Pc2 Is a SUMO E3Cell, 2003
- RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMONature, 2002
- Rca1 Inhibits APC-Cdh1Fzr and Is Required to Prevent Cyclin Degradation in G2Developmental Cell, 2002
- Effective targeted gene ‘knockdown’ in zebrafishNature Genetics, 2000
- A molecular pathway leading to endoderm formation in zebrafishCurrent Biology, 1999
- Relationship between the Genomic Organization and the Overlapping Embryonic Expression Patterns of the ZebrafishdlxGenesGenomics, 1997