Photoinactivation of photosystem II during photoinhibition in the cyanobacterium Microcystis aeruginosa

Abstract
Sites of photoinhibition and photo-oxidative damage to the photosynthetic electrontransport system of the unicellular cyanobacterium Microcystis aeruginosa were identified by studies of the kinetics of chlorophyll fluorescence induction by whole cells at room temperature and from partial photosynthetic electron-transport reactions in vitro in thylakoid preparations. Chlorophyll fluorescence intensity decreased following photoinhibitory light treatment. This was attributed to decreases both in the activity of photosystem II and in electron flow through the primary electron acceptor, Q. This inhibition was only partially reversed over a 50-min dark recovery period. Partial photosynthetic electron-transport experiments in vitro demonstrated that photosystem I was not affected by the photoinhibitory treatment. Light damage was associated exclusively with the light reactions, of photosystem II, at a site close to the reaction centre, between the site where diphenylcarbazide can donate electrons and the site where silicomolybdate can accept electrons. This damage presumably reduced production of ATP by noncyclic photophosphorylation and production of NADPH by photosystem I, decreasing the availability of these co-factors for reducing CO2 in the ‘dark’ reactions of photosynthesis. The importance of these findings is discussed.