Solute permeability of the alveolar epithelium in alloxan edema in dogs

Abstract
The permeability of the alveolar epithelium following alloxan challenge was studied in dogs by determining transfer of radiolabeled solutes between alveolus and blood. Two days after injection of 131-Ialbumin into the blood, anesthetized dogs had the air space of part of one lung isolated by a balloon catheter lodged in a bronchus. We infused the atelectatis-isolated area with normal saline containing trace amounts of Blue Dextran, 125Ialbumin, and 57Co-cyanocobalamin; challenged six animals with intravenous alloxan, and six animals with alloxan added to the alveolar saline. During the pulmonary edema, 57Co-cyanocabalamin and 125I-albumin appeared in the blood and 131I-albumin entered the alveolar saline. The animals challenged by alveolar instillation showed a greater permeability change (P less than 0.05). The bidirectional transfer of macromolecules indicates that alloxan produces a change in the permeability of the alveolar epithelium, allowing diffusional exchange of macromolecules. Since alveolar flooding in hemodynamic edema does not show a similar change in the permeability of the epithelial lining, alveolar flooding in alloxan edema is not due solely to an effect on the endothelial membrane, but also to a direct effect on the epithelial membrane.