Stress‐Induced Alterations in Metabolism of Γ‐Aminobutyric Acid in Rat Brain

Abstract
The effect of a stressful manipulation on the metabolism of γ-aminobutyric acid (GABA) in the rat brain was studied. Application of an immobilized stress to animals induced a significant increase in the striatal and hypothalamic GABA contents without affecting those in other central structures examined. It was also found that the increase in striatal GABA level preceded that in the hypothalamus. This increase in steady-state levels of GABA in the striatum and hypothalamus disappeared at 12 h after the termination of the application of stress for 3 h, which exhibited a maximal stimulatory action on the GABA contents in both central areas. The activity of l-glutamic acid decarboxylase was found to be significantly elevated in the striatum and hypothalamus following the stress application with a concomitant decrease in the content of L-glutamic acid, which is converted to GABA by the catalytic action of the latter enzyme. The in vivo turnover of GABA in the brain was estimated by taking advantages of the postmortem accumulation of GABA following decapitation and of the selective inhibitory action of a low dose of aminooxyacetic acid on the GABA degrading systems, respectively. Analysis using these two different methods revealed that the cerebral turnover of GABA in vivo was not significantly altered under stressful situations despite of the increase in its steady-state level. These results suggest that central GABA system may respond to the input of painful stimuli resulting from the application of a severe physical and psychological stressor, in addition to the well-known functional alterations in catecholamine neurons. The functional significance of these alterations in the central GABA neurons is also discussed.