Quantum-well resonant tunneling bipolar transistor operating at room temperature

Abstract
The first resonant tunneling bipolar transistor (RBT) is reported. The AlGaAs/GaAs wide-gap emitter device, grown by molecular beam epitaxy (MBE), contains a GaAs quantum well and two AlAs barriers between the emitter and the collector. In the common emitter configuration, when the base current exceeds a threshold value, a large drop in the collector current (corresponding to a quenching of the current gain β) is observed at room temperature, along with a pronounced negative conductance as a function of the collector-emitter voltage. These striking characteristics are caused by the quenching of resonant tunneling through the double barrier as the conduction band edge in the emitter is raised above the bottom of the first quantized subband of the well. Single-frequency oscillations are observed at 300 K. The inherent negative transconductance of these new functional devices is extremely valuable for many logic and signal processing applications.