Zfp143 Regulates Nanog Through Modulation of Oct4 Binding
Open Access
- 7 August 2008
- journal article
- research article
- Published by Oxford University Press (OUP) in The International Journal of Cell Cloning
- Vol. 26 (11), 2759-2767
- https://doi.org/10.1634/stemcells.2008-0398
Abstract
Identification of regulators governing the maintenance of embryonic stem (ES) cells is crucial to the understanding of ES cell biology. We identified a zinc finger protein, Zfp143, as a novel regulator for self-renewal. Depletion of Zfp143 by RNA interference causes loss of self-renewal of ES cells. Chromatin immunoprecipitation and electrophoretic mobility shift assays show the direct binding of Zfp143 to the Nanog proximal promoter. Knockdown of Zfp143 or mutation of the Zfp143 binding motif significantly downregulates Nanog proximal promoter activity. Importantly, enforced expression of Nanog is able to rescue the Zfp143 knockdown phenotype, indicating that Nanog is one of the key downstream effectors of Zfp143. More interestingly, we further show that Zfp143 regulates Nanog expression through modulation of Oct4 binding. Coimmunoprecipitation experiments revealed that Zfp143 and Oct4 physically interact with each other. This interaction is important because Oct4 binding to the Nanog promoter is promoted by Zfp143. Our study reveals a novel regulator functionally important for the self-renewal of ES cells and provides new insights into the expanded regulatory circuitry that maintains ES cell pluripotency. Disclosure of potential conflicts of interest is found at the end of this article.Keywords
This publication has 44 references indexed in Scilit:
- Murine inner cell mass-derived lineages depend on Sall4 functionProceedings of the National Academy of Sciences, 2006
- Dissecting self-renewal in stem cells with RNA interferenceNature, 2006
- The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cellsNature Genetics, 2006
- Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitroNature Immunology, 2004
- Derivation of embryonic germ cells and male gametes from embryonic stem cellsNature, 2003
- Lineage choice and differentiation in mouse embryos and embryonic stem cellsDevelopmental Biology, 2003
- BMP Induction of Id Proteins Suppresses Differentiation and Sustains Embryonic Stem Cell Self-Renewal in Collaboration with STAT3Cell, 2003
- STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cellsThe EMBO Journal, 1999
- Essential role of STAT3 for embryonic stem cell pluripotencyProceedings of the National Academy of Sciences, 1999
- Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3Genes & Development, 1998