This study was undertaken to characterize changes in the tachykinin system induced by hyperoxic exposure and the potential effects on airway contractile responses. We exposed 7-day-old rat pups to either room air or hyperoxia (> 95% O2) for 7 days to assess pulmonary beta-preprotachykinin (beta-PPT) gene expression, substance P (SP) levels, and airway contractile responses to cholinergic stimulation before and after neurokinin-1 (NK1) receptor blockade. Lung beta-PPT mRNA expression, lung and tracheal SP levels, and contractile responses to exogenous acetylcholine and electrical field stimulation were measured in vitro in normoxia- and hyperoxia-exposed tracheal cylinders. Hyperoxia caused a 1.1- to 2.6-fold increase in steady-state lung beta-PPT mRNA and a 50 and 32% increase in SP levels of lung and trachea, respectively. In response to cholinergic stimulation, maximal contractile force (Emax) of hyperoxia exposed tracheal muscle was significantly higher than for normoxic controls. Addition of the SP (NK1) receptor blocker CP-99994 (10 microM) decreased sensitivity to electrical field stimulation in both hyperoxic and normoxic trachea without a significant decline in Emax. These data provide evidence for both increased SP production and enhanced maximal contractile responses of hyperoxia-exposed neonatal trachea to cholinergic stimulation. The tachykinin peptide SP does not, however, appear to play a major role in the enhanced airway reactivity associated with hyperoxic lung injury during early postnatal life.