Lipopolysaccharide of the Helicobacter pylori Type Strain NCTC 11637 (ATCC 43504): Structure of the O Antigen Chain and Core Oligosaccharide Regions

Abstract
Smooth- and rough-form lipopolysaccharides from phenol−water extraction of cells from Helicobacter pylori type strain NCTC 11637 were isolated as the water-soluble component of high-Mr and water-insoluble low-Mr gel. Structural investigations were performed on the intact water-soluble smooth-form lipopolysaccharide, various oligosaccharides formed as chemical and enzymic degradation products, and three oligosaccharide fractions liberated by acetic acid hydrolysis from the water-insoluble rough-form lipopolysaccharide. A structure is proposed for the complete polysaccharide component of the smooth-form lipopolysaccharide comprising the O antigen chain, an intervening region, and the inner core oligosaccharide on the basis of 1H and 13C NMR experiments, fast atom bombardment/mass spectrometry, and methylation linkage analysis of permethylated oligo- and polysaccharide derivatives. The most striking feature of the O antigen region in the lipopolysaccharide is the presence of extended chains with fucosylated and nonfucosylated N-acetyllactosamine (LacNAc) units that mimic human cell surface glycoconjugates in normal human granulocytes. The chains are terminated by di- or trimeric Lewisx (Lex) determinants, which are also found in tumor-associated carbohydrate antigens in many adenocarcinomas.