Expression of Heparin-Binding Epidermal Growth Factor–Like Growth Factor in Neointimal Cells Induced by Balloon Injury in Rat Carotid Arteries

Abstract
Balloon catheter injury of rat carotid arteries induces migration and proliferation of smooth muscle cells (SMCs), with subsequent neointimal formation. Several growth factors, such as platelet-derived growth factor and basic fibroblast growth factor, have been shown to be involved in this process, but the mechanisms that modulate the growth and/or migratory properties of SMCs remain unclear. In this study, we investigated whether heparin-binding epidermal growth factor–like growth factor (HB-EGF), which is known to be a potent SMC stimulator from in vitro study, is associated with the proliferative response of SMCs to arterial injury. Northern blot analysis showed that the transcript levels of HB-EGF increased rapidly approximately 12-fold within 2 hours after injury and declined by 2 days but remained 3-fold at 14 days. In situ hybridization analysis demonstrated that the transcript of HB-EGF remained strongly expressed in the neointima, especially near the luminal surface, at 14 days after injury. Immunohistochemical staining showed that HB-EGF protein was positive in the endothelium and only faintly visible in medial SMCs in uninjured vessels. In contrast, 2 days after injury, positive HB-EGF immunostaining was detected in the medial SMCs along the luminal surface. At 7 days, the neointimal SMCs exhibited strong immunostaining for HB-EGF, and at 14 days, they exhibited a gradient of HB-EGF expression with strong immunoreactivity in the most luminal cells. SMCs labeled with 5-bromo-2′-deoxyuridine in their nuclei showed strong immunostaining for HB-EGF protein. Furthermore, the epidermal growth factor receptor to which HB-EGF can bind was also immunostained positively in neointimal SMCs. These data suggest that HB-EGF may play an important role of the proliferation and migration of SMCs in the process of neointimal accumulation induced by arterial injury, probably in an autocrine, paracrine, and/or juxtacrine manner.

This publication has 21 references indexed in Scilit: