Inhibition of Snake Venoms and Phospholipases A2 by Extracts from Native and Genetically Modified Eclipta alba: Isolation of Active Coumestans

Abstract
We genetically modified Eclipta alba using Agrobacterium rhizogenes LBA 9402, with the aim of producing secondary metabolites with pharmacological properties against phospholipase A(2) and the myotoxic activities of snake venom. Extracts from in natura aerial parts and roots, both native and genetically modified (in vitro), were prepared and analysed by high-performance liquid chromatography. In natura materials showed the coumestan wedelolactone at higher concentration in the aerial parts, while demethylwedelolactone appeared at higher concentration in roots. Among the modified roots, clone 19 showed higher concentrations of these coumestans. Our results show that the in natura extracts of plants collected from Botucatu and Ribeirao Preto were efficient in inhibiting snake venom phospholipase A(2) activity. Regarding in vitro material, the best effect against Crotalus durissus terrificus venom was that of clone 19. Clone 19 and isolated coumestans (wedelolactone and demethylwedelolactone) inhibited the myotoxic activity induced by basic phospholipases A(2) isolated from the venoms of Crotalus durissus terrificus (CB) and Bothrops jararacussu (BthTX-I and II). The search for antivenom is justified by the need of finding active principles that are more efficient in neutralizing snake venoms and also as an attempt to complement serum therapy.