Characterization of Rapidly Labeled Ribonucleic Acid from Dwarf Peas

Abstract
The ribonucleic acid synthesized by excised shoots of dwarf pea (Pisum sativum L. cv. Progress No. 9) during short labeling periods has been characterized. Thirty percent of the total 32Pi incorporated in 1 hour is found in the ribosomal fraction. This labeled RNA was polydisperse (6-18 Svedberg units) and after chromatography on a methylated albumin-kieselguhr column about 80% of the radioactivity appeared in two peaks. One of these appeared on the shoulder of heavy ribosomal RNA (“mRNA”) while the other was tenaciously bound to the column (TB-RNA). In the presence of high NaCl concentration, about half of the polydisperse RNA interacted with ribosomal RNA and eluted as “mRNA” while the remainder eluted as TB-RNA. This interaction in the presence of salt seems to result in the alteration of secondary structure because the “mRNA” fraction had a high sedimentation coefficient (45-50 Svedberg units). The polydisperse RNA approaches DNA in low cytidylate and guanylate content. After short periods of labeling TB-RNA showed higher adenylate content than “mRNA.” The radioactivity from the “mRNA” peak can be chased, and these counts may represent a class of shortlived messenger RNA molecules with an average half-life of 10 to 15 minutes. The other component, TB-RNA, could not be chased and accumulated radioactivity during the chase period.