Multiple oligomeric states regulate the DNA binding of helix-loop-helix peptides.

Abstract
To study the protein-protein interactions that allow Id, a negative regulator of cell differentiation, to inhibit the DNA-binding activities of MyoD and E47, we have synthesized peptides corresponding to the helix-loop-helix domains of MyoD, E47, and Id. We show that Id preferentially inhibits the sequence-specific DNA-binding activity of MyoD, a muscle-specific protein, as compared to E47, a more ubiquitous protein. The Id helix-loop-helix domain itself forms stable tetramers, and its inhibitory activity arises from the formation of a heterotetrameric structure with MyoD. The formation of this higher order complex provides a general mechanism by which inhibitory proteins can generate sufficient interaction free energy to overcome the large DNA-binding free energy of dimeric DNA-binding proteins.