The influence of buoyancy on turbulent transport

Abstract
Turbulent transport of fluctuating turbulent energy, turbulent momentum flux, temperature variance, turbulent heat flux, etc. in the upper part of the atmospheric boundary layer is usually dominated by buoyant transport. This transport is responsible for the erosion of the overlying stably stratified region, resulting in progressive thickening of the mixed layer. It is easy to show that a classical gradient transport model for the transport will not work, because it transports energy in the wrong direction. On the other hand, application of the eddy-damped quasi-Gaussian approximation to the equations for the third moments results in a transport model which predicts realistic inversion rise rates and heat-flux profiles. This is also a gradient transport model, but like molecular transport in solutions, a flux of one quantity depends on gradients of all relevant quantities. Transport coefficients are modified by the heat flux, so that the vertical transport is severely reduced near the inversion base. A simple Lagrangian model of transport of an indelible scalar in a stratified flow indicates that the form of the modified transport coefficients results from a marked anisotropic change in the Lagrangian time scale in stratification.

This publication has 1 reference indexed in Scilit: