The distribution of electron-dense tracers in peripheral nerve fibres

Abstract
Two electron-dense tracers, ferritin and lanthanum, have been administered to peripheral nerve fibres, and their uptake has been studied ultrastructurally. It was found that the peri-neurium was an effective barrier to ferritin in vivo, and the tracer was subsequently injected sub-perineurially. Ferritin uptake over a 120-min period was confined to occasional phagocytic vesicles in perineurial and Schwann cells, and to the nodal gap substance and paranodal peri-axonal space. No uptake was observed in the myelin sheath, incisural intraperiod line gap, or in the axoplasm. Soaking fibres in ferritin in vitro resulted in a more generalized cytoplasmic and axoplasmic uptake, although the myelin sheath and Schmidt-Lanterman incisures remained devoid of the tracer. Lanthanum nitrate, included in the fixative solution, delineated the patent incisural intra-period line gap, and outlined the external surface of the terminal loops of nodal Schwann cell cytoplasm, and the paranodal Schwann cell-axolemmal junction. Unlike ferritin, La3+ penetrated the myelin sheath, being usually confined to the intraperiod line region of the outer lamellae, where it was associated with a widening of the lamellar unit, and an apparent splitting of the intraperiod line. The results are discussed with regard to distribution of extracellular space in peripheral nerve fibres.