Golgi apparatus mediated polysaccharide secretion by outer root cap cells of Zea mays

Abstract
In the outer cap cells of roots of Zea mays, secretion is accompanied by hypertrophy of dictyosome cisternae with formation of large secretory vesicles. Vesicle contents are subsequently released from the protoplast by fusion of the vesicle membrane with the plasma membrane. The secreted material, a highly hydrated polysaccharide, was localized intracellularly by the periodic acid-Schiff reaction. Under appropriate conditions, the product moves outward through the cell wall after discharge from the protoplast, and appears as a droplet adhering to the root tip. Under conditions where the secretory product accumulates at the inner wall surfaces, no external droplet is formed. The secretory activity has an active phase that is sensitive to metabolic inhibitors and influenced by temperature (Q10>2), and a passive phase that is independent of temperature, insensitive to metabolic inhibitors but sensitive to osmotic agents. The active phase is characterized by a temperature-independent periodicity (3 hours). Sucrose supplied to the growth medium increases the amount of polysaccharide secreted. Polysaccharide synthesis, segregation into vesicles, and discharge from the protoplast are assumed to require active metabolism; the step involving extrusion of polysaccharide through the cell wall region appears to be a passive process influenced by the degree of hydration of the polysaccharide and by cell turgor.