A biochemical rationale for the anticancer effects of Hsp90 inhibitors: Slow, tight binding inhibition by geldanamycin and its analogues
- 16 May 2006
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 103 (20), 7625-7630
- https://doi.org/10.1073/pnas.0602650103
Abstract
Heat shock protein (Hsp)90 is emerging as an important therapeutic target for the treatment of cancer. Two analogues of the Hsp90 inhibitor geldanamycin are currently in clinical trials. Geldanamycin (GA) and its analogues have been reported to bind purified Hsp90 with low micromolar potency, in stark contrast to their low nanomolar antiproliferative activity in cell culture and their potent antitumor activity in animal models. Several models have been proposed to account for the ≈100-fold-greater potency in cell culture, including that GA analogues bind with greater affinity to a five-protein Hsp90 complex than to Hsp90 alone. We have determined that GA and the fluorescent analogue BODIPY-GA (BDGA) both demonstrate slow, tight binding to purified Hsp90. BDGA, used to characterize the kinetics of ligand–Hsp90 interactions, was found to bind Hsp90α with koff = 2.5 × 10−3 min−1, t1/2 = 4.6 h, and Ki* = 10 nM. It was found that BDGA binds to a functional multiprotein Hsp90 complex with kinetics and affinity identical to that of Hsp90 alone. Also, BDGA binds to Hsp90 from multiple cell lysates in a time-dependent manner with similar kinetics. Therefore, our results indicate that the high potency of GA in cell culture and in vivo can be accounted for by its time-dependent, tight binding to Hsp90 alone. In the broader context, these studies highlight the essentiality of detailed biochemical characterization of drug–target interactions for the effective translation of in vitro pharmacology to cellular and in vivo efficacy.Keywords
This publication has 27 references indexed in Scilit:
- Evaluation of enzyme inhibitors in drug discovery. A guide for medicinal chemists and pharmacologists.2005
- Regulation of Signaling Protein Function and Trafficking by the hsp90/hsp70-Based Chaperone MachineryExperimental Biology and Medicine, 2003
- 17AAG: low target binding affinity and potent cell activity--finding an explanation.2003
- Auditing the pharmacological accounts for Hsp90 molecular chaperone inhibitors: unfolding the relationship between pharmacokinetics and pharmacodynamics.2003
- Heat shock protein 90 inhibition by 17-allylamino-17- demethoxygeldanamycin: a novel therapeutic approach for treating hormone-refractory prostate cancer.2002
- Hsp90 inhibitors as novel cancer chemotherapeutic agentsTrends in Molecular Medicine, 2002
- Stimulation of the weak ATPase activity of human Hsp90 by a client protein 1 1Edited by G. von HeijneJournal of Molecular Biology, 2002
- LY294002-geldanamycin heterodimers as selective inhibitors of the PI3K and PI3K-related familyBioorganic & Medicinal Chemistry Letters, 2001
- Polypeptide release by Hsp90 involves ATP hydrolysis and is enhanced by the co-chaperone p23The EMBO Journal, 2000
- Structure and in vivo function of Hsp90Current Opinion in Structural Biology, 2000