Characterization of a Rhesus Monkey Calicivirus Representing a New Genus of Caliciviridae

Abstract
In this study, we report the characterization of a novel calicivirus (CV), the Tulane virus (TV), which was isolated from stool samples of captive juvenile rhesus macaques (Macaca mulatta) of the Tulane National Primate Research Center. The complete genome of TV contains 6,714 nucleotides plus a poly(A) tail and is organized into three open reading frames (ORFs) that encode the nonstructural (NS) polyprotein (ORF1); the capsid protein (ORF2), with an estimated molecular mass of 57.9 kDa; and a possible minor structural protein (ORF3), with an isoelectric point (pI) of 10.0 and a calculated molecular mass of 22.8 kDa. The NS polyprotein revealed all typical CV amino acid motifs, including GXXGXGKT (NTPase), EYXEX (Vpg), GDCG (protease), and GLPSG and YGDD (polymerase). Phylogenetic trees constructed for the NS polyprotein, NTPase, protease, polymerase, and capsid protein sequences consistently placed the TV on a branch rooted with Norovirus, but with distances equal to those between other genera. The TV can be cultured in a monkey kidney cell line (LLC-MK2) with the appearance of typical cytopathic effect. TV exhibits a typical CV morphology, with a diameter of 36 nm, and has a buoyant density of 1.37 g/ml. According to these physicochemical and genetic characteristics, TV represents a new CV genus for which we propose the name “Recovirus” (rhesus enteric CV). Although the pathogenicity of TV in rhesus macaques remains to be elucidated, the likelihood of TV causing intestinal infection and the availability of a tissue culture system make this virus a valuable surrogate for human CVs.