The Adenylation Domain of Tyrocidine Synthetase 1

Abstract
Sequence analysis of peptide synthetases revealed extensive structure similarity with firefly luciferase, whose crystal structure has recently become available, providing evidence for the localization of the active site at the interface between two subdomains separated by a distorted linker region [Conti, E., Franks, N. P. & Brick, P. (1996) Structure 4, 287–2981. The functional importance of two flexible loops, corresponding to the linker region of firefly luciferase and the highly conserved (S/T)GT(T/S)GXPKG core sequence, has been studied in view of the proposed conformational changes by the use of mutant analysis, limited proteolysis and chemical modification of tyrocidine synthetase 1. Substitution of the highly conserved Arg416, residing in the loop separating the subdomains of the adenylation domain, resulted in profound loss of activity. Limited proteolysis of the mutant suggested significant structural changes as manifested by lack of protection to degradation in the presence of substrates, revealing a probable disturbance of the induced-fit mechanism regulating the transformation from an open to a closed conformation. Mutants, obtained by replacement of the conserved Lys186 from the (S/T)GT(T/S)GXPKG core sequence, displayed only minor differences in substrate-binding affinity despite significant reduction of catalytic efficiency. Residue Lys186 appears to play an important role in either stabilization of the bound substrate through charge-charge-interactions, and/or fixing of the loop for maintainance of the active-site conformation.

This publication has 63 references indexed in Scilit: