Effect of H2 absorption on the magnetic properties of rare-earth transition metal compounds

Abstract
Rare‐earth transition metal compounds are known to be able to (reversibly) absorb large quantities of hydrogen gas at moderate pressures. This absorption of H2 gas leads to substantial changes of the magnetic properties. These include hydrogen induced transitions from Pauli paramagnetism to ferromagnetism. Examples also exist of the reverse effect, i.e., where in ferromagnetic compounds the 3d moment disappears upon hydrogen absorption. The changes in magnetic properties, together with experimental results of X‐ray diffraction and Mössbauer‐effect spectroscopy are discussed in terms of charge transfer and changes in interatomic distances. The metastable character of the ternary hydrides often leads to a loss of the long range atomic order upon hydrogen absorption. This affects not only the absorption capacity (after repeated cycling) but also influences the magnetic behavior. Examples are shown where the atomic disorder has led to pronounced thermomagnetic history effects.

This publication has 20 references indexed in Scilit: