Serotonin 2B receptor is required for heart development

Abstract
Several lines of evidence suggest that the serotonin (5-hydroxytryptamine, 5-HT) regulates cardiovascular functions during embryogenesis and adulthood. 5-HT binds to numerous cognate receptors to initiate its biological effects. However, none of the 5-HT receptor disruptions in mice have yet resulted in embryonic defects. Here we show that 5-HT2B receptor is an important regulator of cardiac development. We found that inactivation of 5-HT2B gene leads to embryonic and neonatal death caused by heart defects. 5-HT2B mutant embryos exhibit a lack of trabeculae in the heart and a specific reduction in the expression levels of a tyrosine kinase receptor, ErbB-2, leading to midgestation lethality. These in vivo data suggest that the Gq-coupled receptor 5-HT2B uses the signaling pathway of tyrosine kinase receptor ErbB-2 for cardiac differentiation. All surviving newborn mice display a severe ventricular hypoplasia caused by impaired proliferative capacity of myocytes. In adult mutant mice, cardiac histopathological changes including myocyte disarray and ventricular dilation were consistently observed. Our results constitute genetic evidence that 5-HT via 5-HT2B receptor regulates differentiation and proliferation of developing and adult heart. This mutation provides a genetic model for cardiopathy and should facilitate studies of both the pathogenesis and therapy of cardiac disorders in humans.