Single-Molecule Magnets: Site-Specific Ligand Abstraction from [Mn12O12(O2CR)16(H2O)4] and the Preparation and Properties of [Mn12O12(NO3)4(O2CCH2But)12(H2O)4]
- 6 July 2001
- journal article
- research article
- Published by American Chemical Society (ACS) in Inorganic Chemistry
- Vol. 40 (17), 4199-4210
- https://doi.org/10.1021/ic010252g
Abstract
Site-selective carboxylate abstraction has been achieved from [Mn(12)O(12)(O(2)CR)(16)(H(2)O)(4)] complexes by treatment with HNO(3) in MeCN. The reaction of the R = Ph or CH(2)Bu(t)() complexes with 4 equiv of HNO(3) gives [Mn(12)O(12)(NO(3))(4)(O(2)CR)(12)(H(2)O)(4)] (R = CH(2)Bu(t) (6) or Ph (7)) in analytical purity. Complex 6.MeNO(2) crystallizes in monoclinic space group C2/c with the following cell parameters at -168 degrees C: a = 21.280(5), b = 34.430(8), c = 33.023(8) A, beta = 104.61(1) degrees, V = 23413 A, and Z = 8. The four NO(3)(-) groups are not disordered and are bound in bridging modes at axial positions formerly occupied by bridging carboxylate groups. (1)H NMR spectroscopy in CD(2)Cl(2) and CDCl(3) shows retention of the solid-state structure on dissolution in these solvents. DC magnetic susceptibility (chi(M)) and magnetization (M) studies have been carried out in the 2.00-300 K and 1.0-7.0 T ranges. Fits of M/Nmu(B) versus H/T plots gave S = 10, g = 1.92, and D = -0.40 cm(-1), where D is the axial zero-field splitting parameter. AC magnetic susceptibility studies on 6 have been performed in the 1.70-10.0 K range in a 3.5 Oe field oscillating at frequencies up to 1500 Hz. Out-of-phase magnetic susceptibility (chi(M)' ') signals were observed in the 4.00-8.00 K range which were frequency-dependent. Thus, 6 displays the slow magnetization relaxation diagnostic of a single-molecule magnet (SMM). The data were fit to the Arrhenius law, and this gave the effective barrier to relaxation (U(eff)) of 50.0 cm(-1) (72.0 K) and a pre-exponential (1/tau(0)) of 1.9 x 10(8) s(-1). Complex 6 also shows hysteresis in magnetization versus DC field scans, and the hysteresis loops show steps at regular intervals of magnetic field, the diagnostic evidence of field-tuned quantum tunneling of magnetization. High-frequency EPR (HFEPR) spectroscopy on oriented crystals of complex 6 shows resonances assigned to transitions between zero-field split M(s) states of the S = 10 ground state. Fitting of the data gave S = 10, g = 1.99, D = -0.46 cm(-1), and B(4)(0) = -2.0 x 10(-5), where B(4)(0) is the quartic zero-field coefficient. The combined results demonstrate that replacement of four carboxylate groups with NO(3)(-) groups leads to insignificant perturbation of the magnetic properties of the Mn(12) complex. Complex 6 should now be a useful starting point for further reactivity studies, taking advantage of the good leaving group properties of the NO(3)(-) ligands.Keywords
This publication has 34 references indexed in Scilit:
- Single-Molecule Magnet Behavior of a Tetranuclear Iron(III) Complex. The Origin of Slow Magnetic Relaxation in Iron(III) ClustersJournal of the American Chemical Society, 1999
- The origin of the second relaxation process in the [Mn12O12(O2CR)16(H2O)4] single-molecule magnets: ‘Jahn–Teller isomerism’ in the [Mn12O12] coreChemical Communications, 1999
- Isomeric Forms of [Mn12O12(O2CR)16(H2O)4] Single-Molecule MagnetsInorganic Chemistry, 1998
- Half-Integer-Spin Small Molecule Magnet Exhibiting Resonant Magnetization TunnelingJournal of the American Chemical Society, 1998
- Resonant magnetization tunnelling in the half-integer-spin single-molecule magnet [PPh4][Mn12O12(O2CEt)16(H2O)4]Chemical Communications, 1998
- Single-molecule magnets: isomeric [Mn12O12(O2CC6H4Me-4)16(H2O)4] complexes exhibiting different rates of resonant magnetization tunnellingChemical Communications, 1997
- Distorted MnIVMnIII3 Cubane Complexes as Single-Molecule MagnetsJournal of the American Chemical Society, 1996
- Superparamagnetic-like properties of the valence-trapped Mn II Mn III 7Mn IV 4 anion in the salt (PPh4)[Mn12O12(O2CEt)16(H2O)4]Journal of the Chemical Society, Chemical Communications, 1994
- Preparation and properties of models for the photosynthetic water oxidation center: spin frustration in the manganese [Mn4O2(O2CR)7(pic)2]- anionInorganic Chemistry, 1991
- Modeling the photosynthetic water oxidation center. Preparation and properties of tetranuclear manganese complexes containing [Mn4O2]6+,7+,8+ cores, and the crystal structures of Mn4O2(O2CMe)6(bipy)2 and [Mn4O2(O2CMe)7(bipy)2](ClO4)Journal of the American Chemical Society, 1989