A functionally characterized test set of human induced pluripotent stem cells

Abstract
Previous work has suggested that induced pluripotent stem cells (iPSCs) are inferior to embryonic stem cells (ESCs) with respect to in vitro differentiation, raising questions about the utility of iPSCs for disease modeling. Characterization of a test set of 16 human iPSC lines shows that they perform as well as ESCs in differentiating to motor neurons. Human induced pluripotent stem cells (iPSCs) present exciting opportunities for studying development and for in vitro disease modeling. However, reported variability in the behavior of iPSCs has called their utility into question. We established a test set of 16 iPSC lines from seven individuals of varying age, sex and health status, and extensively characterized the lines with respect to pluripotency and the ability to terminally differentiate. Under standardized procedures in two independent laboratories, 13 of the iPSC lines gave rise to functional motor neurons with a range of efficiencies similar to that of human embryonic stem cells (ESCs). Although three iPSC lines were resistant to neural differentiation, early neuralization rescued their performance. Therefore, all 16 iPSC lines passed a stringent test of differentiation capacity despite variations in karyotype and in the expression of early pluripotency markers and transgenes. This iPSC and ESC test set is a robust resource for those interested in the basic biology of stem cells and their applications.