HSP90 as a new therapeutic target for cancer therapy: the story unfolds

Abstract
Current anticancer drug development strategies involve identifying novel molecular targets which are crucial for tumourigenesis. The molecular chaperone heat shock protein (HSP) 90 is of interest as an anticancer drug target because of its importance in maintaining the conformation, stability and function of key oncogenic client proteins involved in signal transduction pathways leading to proliferation, cell cycle progression and apoptosis, as well as other features of the malignant phenotype such as invasion, angiogenesis and metastasis. The natural product HSP90 inhibitors geldanamycin and radicicol exert their antitumour effect by inhibiting the intrinsic ATPase activity of HSP90, resulting in degradation of HSP90 client proteins via the ubiquitin proteosome pathway. Anticancer selectivity may derive from the simultaneous combinatorial effects of HSP90 inhibitors on multiple cancer targets and pathways. 17-allylamino,17-demethoxygeldanamycin (17AAG), a geldanamycin derivative, showed good activity and ...