A pleiotropic, posttherapy, enoxacin-resistant mutant of Pseudomonas aeruginosa

Abstract
An enoxacin-resistant Pseudomonas aeruginosa mutant (G49) isolated during patient therapy was characterized in detail. The G49 mutant was cross resistant to several classes of antibiotics including quinolones, beta-lactams, chloramphenicol, and tetracycline, but not imipenem or aminoglycosides. Compared with its paired pretherapy isolate G48, this mutant had several alterations in outer membrane proteins including a complete loss of the major porin protein OprF and a substantially altered lipopolysaccharide profile. Revertants were selected at a frequency of approximately 1% after enrichment for OprF+ cells on low-salt proteose peptone no. 2 medium. Ninety-seven of these OprF+ revertants were as susceptible to carbenicillin and norfloxacin as the pretherapy isolate. One of these revertants was characterized in more detail and shown to be indistinguishable in all properties from the pretherapy isolate. It is proposed that the multiple-antibiotic-resistance (Mar) phenotype of this mutant resulted from a single pleiotropic mutation.