A comparison of the multigroup and collocation methods for solving the low-energy neutron Boltzmann equation

Abstract
A low-energy neutron transport algorithm for use in space-radiation protection is developed. The algorithm is based upon a multiple energy group analysis of the straight ahead Boltzmann equation utilizing a mean value theorem for integrals. The algorithm developed is then verified by using a collocation method solution on the same straight ahead Boltzmann equation. This algorithm was then coupled to the existing NASA Langley HZETRN (high charge and energy transport) code through the evaporation source term. Evaluation of the neutron fluence generated by the February 23, 1956 solar particle event for an aluminum-water shield-target configuration is then compared with the LAHET Monte Carlo calculation for the same shield-target configuration. The algorithm developed showed a great improvement in results over the unmodified HZETRN solution. A bidirectional modification of the evaporation source produced further improvement of the fluence. PACS Nos.; 87.50N, 25.40D, 28.20G