In Vitro Characterization of Lactoferrin Aggregation and Amyloid Formation

Abstract
Lactoferrin has previously been identified in amyloid deposits in the cornea, seminal vesicles, and brain. We report in this paper a highly amyloidogenic region of lactoferrin (sequence of NAGDVAFV). This region was initially identified by sequence comparison with medin, a 5.5 kDa amyloidogenic fragment derived from lactadherin. Subsequent characterization revealed that this peptide forms amyloid fibrils at pH 7.4 when incubated at 37 °C. Furthermore, although full-length lactoferrin does not by itself form amyloid fibrils, the protein does bind to the peptide fibrils as revealed by an increase in thioflavin T fluorescence and the presence of enlarged fibrils by transmission electron microscopy and polarized light microscopy. The binding of lactoferrin is a selective interaction with the NAGDVAFV fibrils. Lactoferrin does not bind to insulin or lysozyme fibrils, and the NAGDVAFV fibrils do not bind to soluble insulin or lysozyme. The lactoferrin appears to coat the peptide fibril surface to form mixed peptide/protein fibrils, but again there is no evidence for the formation of lactoferrin-only fibrils. This interaction, therefore, seems to involve selective binding rather than conventional seeding of fibril formation. We suggest that such a process could be generally important in the formation of amyloid fibrils in vivo since the identification of both full-length protein and protein fragments is common in ex vivo amyloid deposits.

This publication has 11 references indexed in Scilit: