Na+ and K+ effect on contractility of frog sartorius muscle: implication for the mechanism of fatigue

Abstract
Although a decrease in extracellular Na+ and an increase in K+ concentration are believed to contribute to the decrease in force during fatigue, the force of unfatigued muscle decreases only with quite large changes in Na+ and K+ concentration. The objective of this study was to determine whether concomitant and smaller changes in Na+ and K+ concentration have greater effects on muscle contractility than individual changes. At 3 mM K+, a large decrease in Na+ from 120 to 60 mM had no effect on the twitch force, while the tetanic force decreased by 31.2%. At 120 mM Na+, an increase in K+ from 3 to 9 mM potentiated the twitch force by 41.1%, had no effect on the tetanic force at 7 mM, and decreased the tetanic force by 40.4% at 9 mM; both the twitch force and tetanic force were completely abolished at 11 mM K+. The potentiation of the twitch force between 3 and 9 mM K+ was less at 60, 80, and 100 mM than at 120 mM Na+. A reduction in Na+ concentration also reduced the K+ concentration at which the twitch force and tetanic force decreased and were completely abolished. It is shown that the combined effects of Na+ and K+ on the twitch and tetanic contractions were greater than the sum of their individual effects. Furthermore, it is proposed that neither Na+ nor K+ alone can be considered as an important factor in the decrease in force during fatigue, whereas together they are important for the tetanic contraction, but not for the twitch contraction.