Effect of Subcultivation of Human Bone Marrow Mesenchymal Stem on their Capacities for Chondrogenesis, Supporting Hematopoiesis, and Telomea Length

Abstract
Effects of subcultivation of human bone marrow mesenchymal stem cells on their capacities for chondrogenesis and supporting hematopoiesis, and telomea length were investigated. Mesenchymal stem cells were isolated from human bone marrow aspirates and subcultivated several times at 37 °C under a 5% CO2 atmosphere employing DMEM medium containing 10% FCS up to the 20th population doubling level (PDL). The ratio of CD45 CD105+ cells among these cells slightly increased as PDL increased. However, there was no marked change in the chondrogenic capacity of these cells, which was confirmed by expression assay of aggrecan mRNA and Safranin O staining after pellet cell cultivation. The change in capacity to support hematopoiesis of cord blood cells was not observed among cells with various PDLs. On the other hand, telomere length markedly decreased as PDL increased at a higher rate than that at which telomere length of primary mesenchymal stem cells decreased as the age of donor increased.