Effective Post-Exposure Treatment of Ebola Infection

Top Cited Papers
Open Access
Abstract
Ebola viruses are highly lethal human pathogens that have received considerable attention in recent years due to an increasing re-emergence in Central Africa and a potential for use as a biological weapon. There is no vaccine or treatment licensed for human use. In the past, however, important advances have been made in developing preventive vaccines that are protective in animal models. In this regard, we showed that a single injection of a live-attenuated recombinant vesicular stomatitis virus vector expressing the Ebola virus glycoprotein completely protected rodents and nonhuman primates from lethal Ebola challenge. In contrast, progress in developing therapeutic interventions against Ebola virus infections has been much slower and there is clearly an urgent need to develop effective post-exposure strategies to respond to future outbreaks and acts of bioterrorism, as well as to treat laboratory exposures. Here we tested the efficacy of the vesicular stomatitis virus-based Ebola vaccine vector in post-exposure treatment in three relevant animal models. In the guinea pig and mouse models it was possible to protect 50% and 100% of the animals, respectively, following treatment as late as 24 h after lethal challenge. More important, four out of eight rhesus macaques were protected if treated 20 to 30 min following an otherwise uniformly lethal infection. Currently, this approach provides the most effective post-exposure treatment strategy for Ebola infections and is particularly suited for use in accidentally exposed individuals and in the control of secondary transmission during naturally occurring outbreaks or deliberate release. Being highly pathogenic for humans and monkeys and the subject of former weapons programs makes Ebola virus one of the most feared pathogens worldwide today. Due to a lack of licensed pre- and post-exposure intervention, our current response depends on rapid diagnostics, proper isolation procedures, and supportive care of case patients. Consequently, the development of more specific countermeasures is of high priority for the preparedness of many nations. In this study, we investigated an attenuated vesicular stomatitis virus expressing the Ebola virus surface glycoprotein, which had previously demonstrated convincing efficacy as a vaccine against Ebola infections in rodents and monkeys, for its potential use in the treatment of an Ebola virus infection. Surprisingly, treatment of guinea pigs and mice as late as 24 h after lethal Ebola virus infection resulted in 50% and 100% survival, respectively. More important, 50% of rhesus macaques (4/8) were protected if treated 20 to 30 min after Ebola virus infection. Currently, this approach provides the most effective treatment strategy for Ebola infections and seems particularly suited for the use in accidental exposures and the control of human-to-human transmission during outbreaks.