DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires

Abstract
A DNA nanostructure consisting of four four-arm junctions oriented with a square aspect ratio was designed and constructed. Programmable self-assembly of 4 × 4 tiles resulted in two distinct lattice morphologies: uniform-width nanoribbons and two-dimensional nanogrids, which both display periodic square cavities. Periodic protein arrays were achieved by templated self-assembly of streptavidin onto the DNA nanogrids containing biotinylated oligonucleotides. On the basis of a two-step metallization procedure, the 4 × 4 nanoribbons acted as an excellent scaffold for the production of highly conductive, uniform-width, silver nanowires.