Further insight into the mixing process has allowed a definition of the intermediate objectives of processing, which relate to the different transformations that occur as mixing energy is added to a rubber formulation. These convert the ingredients into a coherent mass with specific flow characteristics and determine the efficiency of the next unit, therefore contributing to overall productivity. The total energy added to the batch is derived from a combination of Banbury, mill, and extruder. These processing units vary in the efficiency with which they achieve the required material transformations. Proper allocation of mixing energy to the most effective equipment, with a knowledge of the total energy required to achieve the desired quality, allows a rational optimization of productivity and product quality. Operating profiles for each unit have been constructed in order to aid in optimizing the process. Using a fixed total energy input, these profiles were used to estimate the productivity of each processing unit. The study shows that in a semicontinuous operation with laboratory-size Banbury, mill, and extruder, the extruder is the primary determinant of overall productivity. The study also shows that maximizing productivity in a single unit will not necessarily lead to the highest productivity along the equipment train. Material properties affect overall productivity in several ways. In this work, carbon black surface area determined the total energy required to attain the desired quality level, the flow rate in the extruder, and the energy required to attain the maximum flow rate. Future studies should focus on the derivation of operating equations for specific equipment and materials. These equations should quantify the interrelationships between the different engineering parameters (such as screw or rotor speeds and Banbury ram pressure), the processing parameters (such as mixing time, fill factor, and temperature), and material variables (such as Mooney viscosity, carbon black morphology, and black and oil loading).