HOST-PATHOGEN INTERACTIONS DURING ENTRY AND ACTIN-BASED MOVEMENT OFLISTERIA MONOCYTOGENES

Abstract
Listeria monocytogenes is a pathogenic bacterium that induces its own uptake into mammalian cells, and spreads from one cell to another by an actin-based motility process. Entry into host cells involves the bacterial surface proteins InlA (internalin) and InlB. The receptor for InlA is the cell adhesion molecule E-cadherin. InlB-mediated entry requires activation of the host protein phosphoinositide (PI) 3-kinase, probably in response to engagement of a receptor. Actin-based movement of L. monocytogenes is mediated by the bacterial surface protein ActA. The N-terminal region of this protein is necessary and sufficient for polymerization of host cell actin. Other host proteins involved in bacterial motility include profilin, Vasodilator-Stimulated Phosphoprotein (VASP), the Arp2/Arp3 complex, and cofilin. Studies of entry and intracellular movement of L. monocytogenes could lead to a better understanding of receptor-ligand signaling and dynamics of actin polymerization in mammalian cells.