Recognition of human insulin in vitro by T cells from subjects treated with animal insulins.
Open Access
- 1 December 1985
- journal article
- research article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 76 (6), 2070-2077
- https://doi.org/10.1172/jci112210
Abstract
Structurally defined proteins and peptides have provided considerable information about the specificity and regulation of immune responses in inbred animals. Many diabetics require therapy with insulin; therefore, we used this defined protein as a model antigen to investigate immune responses in the outbred human population. In this report, we examine human T cell recognition of antigenic determinants on various insulins. A group of 25 subjects was selected from over 200 diabetics because of the magnitude of their in vitro responses. 13 of the 25 had significant T cell responses to human insulin despite treatment with only beef/pork insulin mixtures. This autoimmunity may be attributed to crossreactivity of lymphocytes highly reactive to "foreign" epitopes on therapeutic insulins. Alternatively, identical determinants shared by human and animal insulins may be recognized. By employing additional insulins not used therapeutically and isolated A and B chains, several potential mechanisms for lymphocyte autoreactivity to human insulin were demonstrated. Some epitopes are conformational and require recognition of an intact molecule, whereas other epitopes may arise from antigen processing at the cellular level. Studies using zinc-free insulins suggest that zinc-induced alterations of the molecular surface may result in some shared reactivities between animal and human insulin. Furthermore, T cell reactivity against "foreign" epitopes is more complex than anticipated from differences in amino acid sequence. The response patterns of many subjects indicate that the A-chain loop associates with the N-terminal B chain to form a complex determinant. This determinant is recognized more often than individual amino acids. We conclude that insulin therapy generates polyclonal T cell responses directed at multiple epitopes on the molecule. Many of these epitopes are not identified by amino acid exchanges and their presence on human insulin leads to apparent autoimmunity.This publication has 29 references indexed in Scilit:
- Transmission of conformational change in insulinNature, 1983
- Evaluation and management of insulin allergyJournal of Allergy and Clinical Immunology, 1983
- Requirements for the processing of antigens by antigen-presenting B cells. I. Functional comparison of B cell tumors and macrophages.The Journal of Immunology, 1982
- Immune response gene control of determinant selection. III. Polypeptide fragments of insulin are differentially recognized by T but not by B cells in insulin immune guinea pigs.The Journal of Immunology, 1981
- Ir gene control of the immune response to insulins. I. Pork insulin stimulates T cell activity in nonresponder mice.The Journal of Immunology, 1981
- IMMUNE-RESPONSE GENE-CONTROL OF DETERMINANT SELECTION .2. GENETIC-CONTROL OF THE MURINE LYMPHOCYTE-T PROLIFERATIVE RESPONSE TO INSULIN1979
- Effects of zinc ion on the conformation of antigenic determinants on insulinBiochemical Journal, 1978
- Determinant selection is a macrophage dependent immune response gene functionNature, 1977
- Monoiodoinsulin. Preparation, purification, and characterization of a biologically active derivative substituted predominantly on tyrosine A14.1974
- Radioimmunoassay of the A-chain of InsulinDiabetes, 1967