Titin isoform expression in aortic stenosis
Open Access
- 14 August 2009
- journal article
- research article
- Published by Portland Press Ltd. in Clinical Science
- Vol. 117 (6), 237-242
- https://doi.org/10.1042/cs20080248
Abstract
Titin is a giant sarcomeric protein that plays a major role in determining passive myocardial stiffness. The shorter N2B isoform results in a higher passive myocardial stiffness than the longer N2BA isoform. We hypothesised that the expression of the short N2B isoform would be increased in patients with aortic stenosis compared with healthy controls in response to pressure overload, in order to act as a modulator for the increased demand placed on the left ventricle during the early stages of the hypertrophic response. Myocardial biopsies were obtained from the left ventricle of 19 patients undergoing aortic valve replacement for aortic stenosis who had no significant co-existing coronary artery disease. Left ventricular biopsies were also obtained from 13 donor hearts for comparison. SDS-agarose gels revealed small N2B and large N2BA cardiac titin isoforms, with a mean N2BA/N2B ratio that was significantly decreased in the 19 aortic stenotic patients compared with the 13 controls (0.66±0.04 in the normal donor hearts compared with 0.48±0.03 in patients with aortic stenosis; P=0.02). However, total titin remained unchanged (0.28±0.02 compared with 0.24±0.02 respectively; P=0.29). In conclusion, the expression of less N2BA and more N2B titin in response to pressure overload may result in the generation of higher passive tension upon stretch to a given sarcomere length and this might affect cardiac performance.This publication has 29 references indexed in Scilit:
- Passive Stiffness Changes Caused by Upregulation of Compliant Titin Isoforms in Human Dilated Cardiomyopathy HeartsCirculation Research, 2004
- Altered Titin Expression, Myocardial Stiffness, and Left Ventricular Function in Patients With Dilated CardiomyopathyCirculation, 2004
- The Giant Protein TitinCirculation Research, 2004
- Titin Isoform Switch in Ischemic Human Heart DiseaseCirculation, 2002
- Molecular Mechanics of Cardiac Titin's PEVK and N2B Spring ElementsPublished by Elsevier ,2002
- Titin, Myosin Light Chains and C-Protein in the Developing and Failing Human HeartJournal of Molecular and Cellular Cardiology, 1994
- Aortic valve stenosis: Comparison of patients with to those without chronic congestive heart failureThe American Journal of Cardiology, 1986
- Early diastolic left ventricular function in children and adults with aortic stenosisJournal of the American College of Cardiology, 1985
- Diastolic stiffness and myocardial structure in aortic valve disease before and after valve replacement.Circulation, 1984
- Quantitation of human left ventricular mass and volume by two-dimensional echocardiography: in vitro anatomic validation.Circulation, 1981