Abstract
Pleurobranchaea maculata is a carnivorous notaspidean that is common in New Zealand. This species produces small eggs (diameter 100 μm) and planktotrophic veligers that hatch in 8 d and are planktonic for 3 weeks before settling on biofilmed surfaces (14 °C). Larval development is known in detail for only two other notaspidean species, P. japonica and Berthellina citrina. In all three species of pleurobranchids, mantle and shell growth show striking differences from veligers of other opisthobranch taxa. In young veligers of pleurobranchids, the shell is overgrown by the mantle, new shell is added by cells other than those of the mantle fold, and an operculum does not form. Thus some “adult” traits (e.g., notum differentiation, mechanism of shell growth, lack of operculum) are expressed early in larval development. This suggests that apomorphies characteristic of adult pleurobranchids evolved through heterochrony, with expression in larvae of traits typical of adults of other clades. The protoconch is dissolved post-settlement and not cast off as occurs in other opisthobranch orders, indicating that shell loss is apomorphic. P. maculata veligers are atypical of opisthobranchs in having a field of highly folded cells on the lower velar surface, a mouth that is posterior to the metatroch, and a richly glandular, possibly chemodefensive mantle. These data indicate that notaspidean larvae are highly derived in terms of the novel traits and the timing of morphogenic events. Phylogenetic analysis must consider embryological origins before assuming homology, as morphological similarities (e.g., shell loss) may have developed through distinct mechanisms.