Etch Pits at Dislocations in Copper

Abstract
A modification of an etch discovered by Lovell and Wernick has been shown to be a reliable means of revealing dislocations as etch pits on (111) faces of copper crystals. The etch has been employed to study dislocation distributions in as‐grown, annealed, and deformed crystals. A high‐temperature anneal is found to lower the dislocation density of melt‐grown crystals. A ``double‐etch'' technique is employed to observe the motion of dislocations, and to show that the dislocations initially present in these crystals are mobile at low stresses. Subboundaries are numerous in these crystals and are found capable of hindering dislocation movement. Observations of the dislocation structure of crystals deformed in bending and in tension are reported, including the appearance of ``glide polygonization'' after room‐temperature deformation.