The biosynthetic pathway of new polyamines in Caldariella acidophila

Abstract
1. Spermidine and sym-nor-spermine (1,11-diamino-4,8-diazaundecane) were identified as the major components of the polyamine pool in Caldariella acidophila, an extreme thermoacidophilic bacterium. A minor component, a new polyamine, sym-nor-spermidine (1,7-diamino-4-azaheptane) was isolated and characterized. 2. To elucidate the biosynthetic pathway, labelled methionine, putrescine, spermidine and spermine were fed to Caldariella acidophila. Incubation of the bacterium in the presence of putrescine or spermidine labelled in the tetramethylene moiety gave unlabelled sym-nor-spermidine and sym-nor-spermine, whereas the radioactivity of propylamine-labelled methionine or spermidine was incorporated into these molecules. No radioactivity was recovered in the polyamines pool when spermine was fed to Caldariella acidophila. 3. S-Adenosylmethionine and S-(5′-adenosyl)-3-methylthiopropylamine were identified as intermediates of the biosynthetic pathway; the cellular contents of the two sulphonium compounds, measured with a new isotope-dilution technique, are 60 and 15nmol/g wet wt. of cells respectively. 4. The above results are indicative of a new pathway characterized by three propylamine-transfer reactions, decarboxylated S-adenosylmethionine being the common donor of the propylamine moiety. The reactions yielding sym-nor-spermidine and sym-nor-spermine are reported for the first time. 5. The probable intermediates related to the catabolism of the tetramethylene moiety of spermidine, γ-aminobutyraldehyde, γ-aminobutyric acid or Δ1-pyrroline were not detectable. Experiments with [3-aminopropyl-3(n)-3H]spermidine trihydrochloride plus [tetramethylene-1,4-14C]spermidine trihydrochloride gave rise to an amount of labelled CO2 equivalent to the spermidine catabolized.