Magnetic effects in non-relativistic quantum electrodynamics: image corrections to the electron moment
- 1 July 1977
- journal article
- Published by IOP Publishing in Journal of Physics A: General Physics
- Vol. 10 (7), 1201-1209
- https://doi.org/10.1088/0305-4470/10/7/017
Abstract
Conventional non-relativistic quantum electrodynamics is used to calculate position-dependent corrections to the magnetic moment of an electron a distance z from a perfectly conducting surface. To leading order, delta mu /sub ///=-e3/32m2z and delta mu z=0. These results follow easily and without any special pleading from the usual Foldy-Wouthuysen Hamiltonian, and are validated by necessarily much more elaborate relativistic calculations using either the full quantum field theory, or Dirac single-particle theory. Together with a recent non-relativistic account of the free-electron anomalous moment, such agreement is interpreted as a plausible indication that non-relativistic quantum electrodynamics is at least qualitatively adequate to deal with magnetic radiative effects, on the same footing as it can deal with non-magnetic analogues like the Lamb shift.Keywords
This publication has 7 references indexed in Scilit:
- Quantum mechanics of charged particles near a plasma surfaceJournal of Physics A: General Physics, 1977
- Lowest-order radiative level shifts in Coulomb-gauge electrodynamicsPhysical Review D, 1976
- Frequency shifts near an interface: inadequacy of two-level atomic modelsJournal of Physics B: Atomic and Molecular Physics, 1974
- Quantum electrodynamics between conducting plates III. Relativistic theory and magnetic moment of the free electronProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1972
- The Electromagnetic Shift of Landau Levels and the Magnetic Moment of the ElectronAmerican Journal of Physics, 1969
- On the Dirac Theory of Spin 1/2 Particles and Its Non-Relativistic LimitPhysical Review B, 1950
- Some Observable Effects of the Quantum-Mechanical Fluctuations of the Electromagnetic FieldPhysical Review B, 1948