Sequence-Encoded Self-Assembly of Multiple-Nanocomponent Arrays by 2D DNA Scaffolding

Abstract
Regular 2D arrays of multiple types of nanocomponents were constructed by self-assembly to DNA scaffolding with alternating rows of sequence-encoded hybridization sites. Different-sized Au particles coated with DNA complementary to one of the sites were bound to the scaffolding, producing alternating rows of the two nanocomponents with a 32-nm inter-row spacing. These results demonstrate the potential for using DNA to self-assemble complex arrays of components with nanometer-scale precision.