Exponential-phase expression of spvA of the Salmonella typhimurium virulence plasmid: induction in intracellular salts medium and intracellularly in mice and cultured mammalian cells

Abstract
The spv genes of Salmonella typhimurium and other non-typhoidal Salmonella serovars are essential for efficient systemic infection beyond the intestines in orally inoculated mice as a model for enteric fever. These virulence genes are not significantly expressed by salmonellae during exponential growth in L broth but are induced when the bacteria enter the stationary phase of growth. Using RNase protection analysis to directly measure spvA mRNA from the virulence plasmid of S. typhimurium, we found that spvA was maximally induced in an SpvR- and RpoS-dependent manner during exponential growth in Intracellular Salts Medium, which mimics the intracellular environment of mammalian cells. A cloned spvA-lacZ operon fusion in S. typhimurium was induced intracellularly in peritoneal cells of mice, correlating in vivo intracellular gene expression with intracellular function of the spv genes in infected mice. spvA was also induced intracellularly in vitro within both Henle-407 intestinal epithelial cells and J774.A1 macrophage-like cells when the bacteria were replicating with exponential kinetics. Prevention of invasion of salmonellae with cytochalasin D inhibited spvA induction within tissue culture cells, indicating that salmonellae must be internalized for spvA to be induced. The spvA-lacZ fusion was not induced by salmonellae in extracellular fluid of the peritoneal cavity or in serum. Since induction of the spv genes occurs intracellularly during exponential growth of salmonellae, cessation of growth may not be the most relevant inducing signal for spv gene expression.