An investigation of the hidden structure of states in a mean-field spin-glass model

Abstract
We study the geometrical structure of the states in the low-temperature phase of a mean-field model for generalized spin glasses, the p-spin spherical model. This structure cannot be revealed by the standard methods, mainly due to the presence of an exponentially high number of states, each one having a vanishing weight in the thermodynamic limit. Performing a purely entropic computation, based on the TAP equations for this model, we define a constrained complexity which gives the overlap distribution of the states. We find that this distribution is continuous, non-random and highly dependent on the energy range of the considered states. Furthermore, we show which is the geometrical shape of the threshold landscape, giving some insight into the role played by threshold states in the dynamical behaviour of the system.