The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose.
Open Access
- 1 January 1994
- journal article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 93 (1), 397-404
- https://doi.org/10.1172/jci116972
Abstract
The major reabsorptive mechanism for D-glucose in the kidney is known to involve a low affinity high capacity Na+/glucose cotransporter, which is located in the early proximal convoluted tubule segment S1, and which has a Na+ to glucose coupling ratio of 1:1. Here we provide the first molecular evidence for this renal D-glucose reabsorptive mechanism. We report the characterization of a previously cloned human kidney cDNA that codes for a protein with 59% identity to the high affinity Na+/glucose cotransporter (SGLT1). Using expression studies with Xenopus laevis oocytes we demonstrate that this protein (termed SGLT2) mediates saturable Na(+)-dependent and phlorizin-sensitive transport of D-glucose and alpha-methyl-D-glucopyranoside (alpha MeGlc) with Km values of 1.6 mM for alpha MeGlc and approximately 250 to 300 mM for Na+, consistent with low affinity Na+/glucose cotransport. In contrast to SGLT1, SGLT2 does not transport D-galactose. By comparing the initial rate of [14C]-alpha MeGlc uptake with the Na(+)-influx calculated from alpha MeGlc-evoked inward currents, we show that the Na+ to glucose coupling ratio of SGLT2 is 1:1. Using combined in situ hybridization and immunocytochemistry with tubule segment specific marker antibodies, we demonstrate an extremely high level of SGLT2 message in proximal tubule S1 segments. This level of expression was also evident on Northern blots and likely confers the high capacity of this glucose transport system. We conclude that SGLT2 has properties characteristic of the renal low affinity high capacity Na+/glucose cotransporter as previously reported for perfused tubule preparations and brush border membrane vesicles. Knowledge of the structural and functional properties of this major renal Na+/glucose reabsorptive mechanism will advance our understanding of the pathophysiology of renal diseases such as familial renal glycosuria and diabetic renal disorders.This publication has 35 references indexed in Scilit:
- Localization of the Na+/Glucose Cotransporter Gene SGLT2 to Human Chromosome 16 Close to the CentromereGenomics, 1993
- Steady states, charge movements, and rates for a cloned GABA transporter expressed in Xenopus oocytesNeuron, 1993
- Molecular evidence for two renal Na+/glucose cotransportersBiochimica et Biophysica Acta (BBA) - Biomembranes, 1992
- Molecular genetics of the human Na+/glucose cotransporterKlinische Wochenschrift, 1989
- Characterization of a Na+/glucose cotransporter cloned from rabbit small intestineThe Journal of Membrane Biology, 1989
- Assignment of the human intestinal Na+/glucose cotransporter gene (SGLT1) to the q11.2 → qter region of chromosome 22Genomics, 1989
- Advanced Glycosylation End Products in Tissue and the Biochemical Basis of Diabetic ComplicationsNew England Journal of Medicine, 1988
- Intracellular sodium in proximal tubules of diabetic rats. Role of glucoseKidney International, 1988
- Stoichiometric studies of the renal outer cortical brush border membraned-glucose transporterThe Journal of Membrane Biology, 1982
- Further studies of proximal tubular brush border membraned-glucose transport heterogeneityThe Journal of Membrane Biology, 1982