Abstract
An experiment has been conducted modelling a two-dimensional mixed region collapsing in a continuously density-stratified medium. The process of collapse can be divided into three stages. Empirical formulae have been derived to describe the process of the first two stages, during which gravitational effects determine the modelling criterion. The collapse in the final stage is complicated by viscous effects; a ratio between the Froude number and the Reynolds number seems to provide a probable modification of the time scale. The pattern of internal waves generated by the initial impulsive collapse of this mixed region can be represented by moving rays connecting either wave crests or troughs. These rays move away from the collapse centre and at the same time decrease their slopes from the horizontal. A simpler steady-state wave pattern generated by an oscillating plunger has also been studied. Taken together, these experimental results are interpreted to show that the energy density of the collapse is skewed toward high frequencies and is peaked at 8/10 of the Brunt-Väisälä frequency of the medium.

This publication has 5 references indexed in Scilit: