Mediterranean eddies (meddies) play an important role in maintaining the temperature and salinity distributions in the North Atlantic, but relatively little is known about their early life histories, including where, how often, and by what mechanism they form. A major field program, called A Mediterranean Undercurrent Seeding Experiment, has been carried out to directly observe meddy formation and the spreading pathways of Mediterranean Water into the North Atlantic. Between May 1993 and March 1994, 49 RAFOS floats were deployed sequentially in the Mediterranean Undercurrent south of Portugal and tracked acoustically for up to 11 months. The float deployments were accompanied by high-resolution XBT sections across the undercurrent. Nine meddy formation events were observed in the float trajectories, six near Cape St. Vincent, at the southwestern corner of the Iberian Peninsula, and three near the Estremadura Promontory, along the western Portuguese continental slope. Meddy formation thus occurs w... Abstract Mediterranean eddies (meddies) play an important role in maintaining the temperature and salinity distributions in the North Atlantic, but relatively little is known about their early life histories, including where, how often, and by what mechanism they form. A major field program, called A Mediterranean Undercurrent Seeding Experiment, has been carried out to directly observe meddy formation and the spreading pathways of Mediterranean Water into the North Atlantic. Between May 1993 and March 1994, 49 RAFOS floats were deployed sequentially in the Mediterranean Undercurrent south of Portugal and tracked acoustically for up to 11 months. The float deployments were accompanied by high-resolution XBT sections across the undercurrent. Nine meddy formation events were observed in the float trajectories, six near Cape St. Vincent, at the southwestern corner of the Iberian Peninsula, and three near the Estremadura Promontory, along the western Portuguese continental slope. Meddy formation thus occurs w...