Convolutional Code Performance in the Rician Fading Channel

Abstract
The performance of short constraint length convolutional codes in conjunction with binary phase-shift keyed (BPSK) modulation and Viterbi maximum likelihood decoding on the classical Rician fading channel is examined in detail. Primary interest is in the bit error probability performance as a function of E_{b}/N_{0} parameterized by the fading channel parameters. Fairly general upper bounds on bit error probability performance in the presence of fading are obtained and compared with simulation results in the two extremes of zero channel memory and infinite channel memory. The efficacy of simple block interleaving in combating the memory of the channel is thoroughly explored. Results include the effects of fading on tracking loop performance and the subsequent impact on overall coded system performance. The approach is analytical where possible; otherwise resort is made to digital computer simulation.