The mechanical behavior of the human forearm in response to transient perturbations

Abstract
Static and dynamic components of mechanical impedance of human forearm were evaluated by applying two kinds of perturbations: 1) large viscoelastic loads, and 2) small pseudo-random perturbations. When the task involved the active resistance of the perturbations, both stiffness and viscosity increased relatively to their values in the passive task, the increment in stiffness being larger than that in viscosity. The time course of such changes was investigated during the transition between the two operating points defined by the instructions “do not resist” and “resist” the applied perturbations. The changes in stiffness and viscosity were relatively slow, those in the latter lagging behind those in the former.